a3+b3=(a+b)(a2-ab+b2). Eqn I By solving a/b + b/a = 1 a2-ab+b2= 0 Eqn II
Putting Eqn II in Eqn I Ans = 0 ( Zero )
ANSWER: 0 a3+b3=(a+b)(a2-ab+b2). Eqn I By solving a/b + b/a = 1 a2-ab+b2= 0 Eqn II Putting Eqn II in Eqn I Ans = 0 ( Zero )
If abcde=1 (where a,b,c,d and e are all positive real numbers) then what is the minimum value of a+b+c+d+e?