What is the range of the values of k such that k Cos A - 3 Sin A = k + 1
has a real solution?
k(cos A) - 3(sin A) = k + 1 k(cos A) - (k + 1) = 3(sin A) [k(cos A) - (k + 1)]² = [3(sin A)]² => k²cos²A - 2k(k + 1)(cos A) + (k + 1)² = 9sin²A => k²cos²A - (2k² + 2k)(cos A) + (k + 1)² = 9(1 - cos²A) => (k² + 9)cos²A - (2k² + 2k)(cos A) + (k² + 2k - 8) = 0 Here we have a quadratic equation in terms of (cos A). This equation is only solvable when the determinant b² - 4ac≥ 0, otherwise the solution will be complex. b² - 4ac ≥ 0 => [-(2k² + 2k)]² - 4(k² + 9)(k² + 2k - 8) ≥ 0 => (4k^4 + 8k³ + 4k²) - (4k^4 + 8k³ + 4k² + 72k - 288) ≥ 0 => -72k + 288 ≥ 0 => 72k ≤ 288 => k ≤ 4
What would be the value of Sin(50 + A) - Cos(40 - A), share your working also?
If Sin A + Cos A = sqrt(2) Sin (90 - A) then Cot A = ??