If
a>0, b>0 and c>0 and a+b+c =6
then
what would be the minimum value of a^2 + b^2 + c^2
Minimum value of a^2 + b^2 + c^2 will be 12 with a=2, b=2, c=2. Any other values gives > 12
14 A=1 B = 2 C = 3
a+b=8, a+c=13, b+d=8, c-d=6
Then
a, b, c, d = ??
If abcde=1 (where a,b,c,d and e are all positive real numbers) then what is the minimum value of a+b+c+d+e?
What is the value of X if X=a+b+c+d+3 and x/5=a, x/8=b, x/6=c, x/2=d