If P=Sin A.Sin B, Q= Sin C.Cos A, R = Sin A.Cos B and S=Cos A.Cos C then 5(P^2+Q^2+R^2+S^2) = ??
We can see that
P^2 + R^2 = {sin(A)}^2 and Q^2 + S^2 = {Cos(A)}^2
adding we get P^2 + R^2 + Q^2 + S^2 = 1
So 5(P^2 + R^2 + Q^2 + S^2) = 5
If Sin A + Cos A = sqrt(2) Sin (90 - A) then Cot A = ??
If in a triangle ABC: Cos A + Cos B + Cos C = 3/2 then what is so special about this triangle?