Merge Sort
Merge sort is a divide-and-conquer algorithm, the idea is first splitting data into two subsets, then sort then merge. The time complexity is O(nlogn)O(nlogn) with O(n)O(n) extra memory.
It is not difficult to implement a recursive version merge sort in C++ or Java, or Python, etc. However, using STL, it takes no more than 10 lines of code to implement a merge sort algorithm [1].
The key is using function std::inplace_merge [1]: the function comes with two signatures:.
template< class BidirIt >
void inplace_merge( BidirIt first, BidirIt middle, BidirIt last );
template< class BidirIt, class Compare>
void inplace_merge( BidirIt first, BidirIt middle, BidirIt last, Compare comp );
The function merges two consecutive sorted ranges [first, middle) and [middle, last) into a sorted range [first, last). The default comparison operation is less than.
Following example is from [1]:
#include <vector>
#include <iostream>
#include <algorithm>
template<class Iter>
void merge_sort(Iter first, Iter last){
if (last - first > 1) {
Iter middle = first + (last - first) / 2;
merge_sort(first, middle); // [first, middle)
merge_sort(middle, last); // [middle, last)
std::inplace_merge(first, middle, last);
}
}
int main(){
std::vector<int> v{8, 2, -2, 0, 11, 11, 1, 7, 3};
merge_sort(v.begin(), v.end());
for(auto n : v) {
std::cout << n << ' ';
}
std::cout << '\n';
return 0;
}
Note that
the parameters of bidirectional iterator type should meet requirements of ValueSwappable (can be parsed by std::swap()).
the dereferenced type of bidirectional iterator should meet the requirements of MoveAssignable and MoveConstructible. In other words, the dereferenced type should at least support a copy assignment operation and have a copy constructor.