What is Apache Pig?
Pig is a high-level platform for creating MapReduce programs used with Hadoop. The language for this platform is called Pig Latin. Pig Latin abstracts the programming from the Java MapReduce idiom into a notation which makes MapReduce programming high level, similar to that of SQL for RDBMS systems.
Pig's language layer currently consists of a textual language called Pig Latin, which has the following key properties:
Ease of programming. It is trivial to achieve parallel execution of simple, "embarrassingly parallel" data analysis tasks. Complex tasks comprised of multiple interrelated data transformations are explicitly encoded as data flow sequences, making them easy to write, understand, and maintain.
Optimization opportunities. The way in which tasks are encoded permits the system to optimize their execution automatically, allowing the user to focus on semantics rather than efficiency.
Extensibility. Users can create their own functions to do special-purpose processing.
Pig runs on Apache Hadoop YARN and makes use of MapReduce and the Hadoop Distributed File System (HDFS). The language for the platform is called Pig Latin, which abstracts from the Java MapReduce idiom into a form similar to SQL. While SQL is designed to query the data, Pig Latin allows you to write a data flow that describes how your data will be transformed (such as aggregate, join and sort).
The user can run Pig in two modes, using either the “pig” command or the “java” command:
MapReduce Mode. This is the default mode, which requires access to a Hadoop cluster.
Local Mode. With access to a single machine, all files are installed and run using a local host and file system.
Video for Apache Pig?
https://www.youtube.com/watch?v=5QbSt3Sv7b8