What is Accord.NET?
Accord.NET is a framework for scientific computing in .NET. The source code of the project is available under the terms of the Gnu Lesser Public License, version 2.1.
The framework comprises a set of libraries that are available in source code as well as via executable installers and NuGet packages.
The main areas covered include numerical linear algebra, numerical optimization, statistics, machine learning, artificial neural networks, signal and image processing, and support libraries (such as graph plotting and visualization). The project was originally created to extend the capabilities of the AForge.NET Framework, but has since incorporated AForge.NET inside itself. Newer releases have united both frameworks under the Accord.NET name.
The Accord.NET Framework has been featured in multiple books such as Mastering.NET Machine Learning by PACKT publishing and F# for Machine Learning Applications
After merging with the AForge.NET project, the framework now offers a unified API for learning/training machine learning models that is both easy to use and extensible. It is based on the following pattern:
- Choose a learning algorithm that provides a Learn(x, y) or Learn(x) method;
- Use the Learn(x, y) to create a machine learning model learned from the data;
- Use the model's Transform, Decide, Scores, Probabilities or LogLikelihoods methods.
For Installing process check here: https://github.com/accord-net/framework
Video for Accord.NET