top button
Flag Notify
    Connect to us
      Site Registration

Site Registration

What is the difference between Multi threading vs Multiprocessing in python?

0 votes
584 views
What is the difference between Multi threading vs Multiprocessing in python?
posted Jan 31, 2019 by anonymous

Share this question
Facebook Share Button Twitter Share Button LinkedIn Share Button

1 Answer

0 votes

The threading module uses threads, the multiprocessing module uses processes. The difference is that threads run in the same memory space, while processes have separate memory. This makes it a bit harder to share objects between processes with multiprocessing.

answer Feb 18, 2019 by Anuprasad
Similar Questions
0 votes

This is my first script where I want to use the python threading module. I have a large dataset which is a list of dict this can be as much as 200 dictionaries in the list. The final goal is a histogram for each dict 16 histograms on a page ( 4x4 ) - this already works.
What I currently do is a create a nested list [ [ {} ], [ {} ] ] each inner list contains 16 dictionaries, thus each inner list is a single page of 16 histograms. Iterating over the outer-list and creating the graphs takes to long. So I would like multiple inner-list to be processes simultaneously and creating the graphs in "parallel".
I am trying to use the python threading for this. I create 4 threads loop over the outer-list and send a inner-list to the thread. This seems to work if my nested lists only contains 2 elements - thus less elements than threads. Currently the scripts runs and then seems to get hung up. I monitor the resource on my mac and python starts off good using 80% and when the 4-thread is created the CPU usages drops to 0%.

My thread creating is based on the following : http://www.tutorialspoint.com/python/python_multithreading.htm

+1 vote

I am working on integration of multiple GUI (Tkinter) elements, such a progress bar, label update, etc, and throughout my research i discovered that i need to have Threading modules used to distribute the calls for GUI update and processing of my main App.

My Application is broken into multiple Classes(modules), and i wanted to hear your thought on the best practices to implement the Threading model.

I was thinking to create a new py-module, and reference all other modules/class to it, and create thread.start() objects, that would execute the GUI part, other will handle GUI Updates, and other - will be doing the processing.

Please share some of your thought on this approach, or maybe you may suggest a more effective way.

+1 vote

I want my thread to be killed when I receive a particular message from Master.(I want my thread to stop whatever it is doing and come out.)

I tried few things but not working,
1) thread_name.exit()
2) thread_name.daemon = True

Any other way?

0 votes

I have a pool of worker threads, created like this:

threads = [MyThread(*args) for i in range(numthreads)]
for t in threads:
 t.start()

I then block until the threads are all done:

while any(t.isAlive() for t in threads):
 pass

Is that the right way to wait for the threads to be done? Should I stick a call to time.sleep() inside the while loop? If so, how long should I sleep? That's probably an unanswerable question, but some guidelines on
choosing the sleep time will be appreciated.

...