top button
Flag Notify
    Connect to us
      Site Registration

Site Registration

Hadoop: Map Reduce in Cache

+2 votes
500 views

I have a set of input files which are going through changes. Is there any way by which we can run a Map reduce program which caches results.

Also, whenever there is any change to the input files the Map Reduce program automatically runs again and the resultset is altered according to changes to input files?

Can we use MR to approach this dynamically ?

posted Feb 11, 2015 by anonymous

Share this question
Facebook Share Button Twitter Share Button LinkedIn Share Button

1 Answer

+1 vote

MapReduce is the heart of Hadoop®. It is this programming paradigm that allows for massive scalability across hundreds or thousands of servers in a Hadoop cluster. The MapReduce concept is fairly simple to understand for those who are familiar with clustered scale-out data processing solutions.

An example of MapReduce

Let’s look at a simple example. Assume you have five files, and each file contains two columns (a key and a value in Hadoop terms) that represent a city and the corresponding temperature recorded in that city for the various measurement days. Of course we’ve made this example very simple so it’s easy to follow. You can imagine that a real application won’t be quite so simple, as it’s likely to contain millions or even billions of rows, and they might not be neatly formatted rows at all; in fact, no matter how big or small the amount of data you need to analyze, the key principles we’re covering here remain the same. Either way, in this example, city is the key and tempera­ture is the value.
Toronto, 20
Whitby, 25
New York, 22
Rome, 32
Toronto, 4
Rome, 33
New York, 18
Out of all the data we have collected, we want to find the maximum tem­perature for each city across all of the data files (note that each file might have the same city represented multiple times). Using the MapReduce framework, we can break this down into five map tasks, where each mapper works on one of the five files and the mapper task goes through the data and returns the maximum temperature for each city. For example, the results produced from one mapper task for the data above would look like this:
(Toronto, 20) (Whitby, 25) (New York, 22) (Rome, 33)
Let’s assume the other four mapper tasks (working on the other four files not shown here) produced the following intermediate results:
(Toronto, 18) (Whitby, 27) (New York, 32) (Rome, 37)(Toronto, 32) (Whitby, 20) (New York, 33) (Rome, 38)(Toronto, 22) (Whitby, 19) (New York, 20) (Rome, 31)(Toronto, 31) (Whitby, 22) (New York, 19) (Rome, 30)
All five of these output streams would be fed into the reduce tasks, which combine the input results and output a single value for each city, producing a final result set as follows:
(Toronto, 32) (Whitby, 27) (New York, 33) (Rome, 38)
As an analogy, you can think of map and reduce tasks as the way a cen­sus was conducted in Roman times, where the census bureau would dis­patch its people to each city in the empire. Each census taker in each city would be tasked to count the number of people in that city and then return their results to the capital city. There, the results from each city would be reduced to a single count (sum of all cities) to determine the overall popula­tion of the empire. This mapping of people to cities, in parallel, and then com­bining the results (reducing) is much more efficient than sending a single per­son to count every person in the empire in a serial fashion.

answer Feb 13, 2015 by Amit Kumar Pandey
Similar Questions
+1 vote

How a job works in YARN/Map Reduce? like navigation path.

Please check my understanding is right?

When the application or job or client starts, client communicate with Name node the application manager started on node (data node), Application manager communicates with Resource manager (on name node) to get resource.The resource are assigned to container. The job runs on Container which is JVM.

+2 votes

I need your help in writing the map reduce program in Java. I am creating a mapper and reducer classes for reading and processing a log file. I also have many other class files which acts as supporting classes to mapper and will be instantiated from mapper class within the map function.

PROBLEM STATEMENT :
Since there are 20 other objects which will be instantiated from mapper class within the map function, we think this could create a performance hit because of multiple object creation .

Please let us know what could be best approach/design to instantiate these 20 classes from Mapper class without compromising on the performance.

Your suggestions/comments are welcome.

0 votes

I have a system where files are coming in hdfs at regular intervals and I perform an operation everytime the directory size goes above a particular point.

My Question is that when I submit a map reduce job, would it only work on the files present at that point?

+3 votes

I am looking to the Yarn mapreduce internals to try to understand how reduce tasks know which partition of the map output they should read. Even, when they re-execute after a crash?

I am also looking to the mapreduce source code. Is there any class that I should look to try to understand this question?

...