True or False:
1/0! + 1/1! + 1/2! + 1/3!.... = 0/0! + 1/1! + 2/2! + 3/3!....
share your working?
0/0! + 1/1! + 2/2! + 3/3!.... = 0 + 1*1/1*0! + 2*1/2*1! + 3*1/3*2!.... = 0 + 1/0! + 1/1! + 1/2!........ similarly for 0/0! + 1/1! + 2/2! + 3/3! + 4/4!.... = 0 + 1*1/1*0! + 2*1/2*1! + 3*1/3*2! + 4*1/4*3!.... = 0 + 1/0! + 1/1! + 1/2! + 1/3!........ = L.H.S
If (3!)^2 - (2!)^1 - (1!)^0 - 3! - 2! - 1! - 0! = 7 + x^2 then x^2 - 3x/2 - 4 = ?
If possible fill + or - for o and make this true, if not possible then provide the reasoning...
1 o 1/2 o 1/3 o 1/4 o 1/5 o 1/6 o 1/7 o 1/8 o 1/9 o 1/10 o 1/11 o 1/12 = 0
If 1^3 + 2^3 + 3^3 = m^2 where m is also an integer. What are the next three consecutive positive integers such that the sum of their individual cubes is equal to a perfect square?