top button
Flag Notify
    Connect to us
      Site Registration

Site Registration

If a + 1/a = 2 Cos 6 then a^1000 + 1/a^1000 + 1 = ??

0 votes
207 views
If a + 1/a = 2 Cos 6 then a^1000 + 1/a^1000 + 1 = ??
posted Dec 21, 2017 by anonymous

Share this puzzle
Facebook Share Button Twitter Share Button LinkedIn Share Button

1 Answer

0 votes

a + 1/a = 2 cos (6) => 6 is in radians
a^2 + 1/a^2 = (a + 1/a)^2 - 2 = 4 cos^2(6) - 2 = 2 cos(12)
a^3 +1/a^3 = (a+ 1/a) * (a^2 + 1/a^2) - (a + 1/a)
= 2 cos(6) * [4 cos^2(6) - 2] - 2 cos(6) = 2 cos(18)
a^4 + 1/a^4 = (a + 1/a) * (a^3 + 1/a^3) - (a^2 + 1/a^2)
= 2 cos(6) * 2 cos (18) - 2 cos(12) = 2 cos(24)
in general, for x > 1
a^x + 1/a^x = 2 cos(6x)
hence:
a^1000 + 1/a^1000 + 1 = 2 cos(6000) +1

answer Dec 31, 2017 by Yasin Hossain Siinan



Similar Puzzles
0 votes

If in a triangle ABC:
Cos A + Cos B + Cos C = 3/2
then what is so special about this triangle?

+1 vote

If
Sin A + Cos A = sqrt(2) Sin (90 - A)
then
Cot A = ??

0 votes

If
P=Sin A.Sin B,
Q= Sin C.Cos A,
R = Sin A.Cos B and
S=Cos A.Cos C
then
5(P^2+Q^2+R^2+S^2) = ??

...