top button
Flag Notify
    Connect to us
      Site Registration

Site Registration

If (a+b):(a-b) = 1:5, then (a^2 - b^2):(a^2 + b^2) equals to what ?

+1 vote
695 views
If (a+b):(a-b) = 1:5, then (a^2 - b^2):(a^2 + b^2) equals to what ?
posted Sep 3, 2015 by Samardeep Acharya

Share this puzzle
Facebook Share Button Twitter Share Button LinkedIn Share Button

2 Answers

+1 vote

(4/9) / (13/9) = 0.386
(a + b) / (a - b) = 1/5
5a + 5b = a - b
b = -4/6 * a
.
a^2 = a^2
b^2 = (-4/6 * a)^2 = (-4/6)^2 * (a)^2 = 4/9 * a^2
.
(a^2 - b^2) / (a^2 + b^2) =
(a^2 - 4/9 * a^2) / (a^2 + 4/9 a^2) =
(5/9 * a^2) / (13/9 * a^2) = (5/9) / (13/9)

answer Sep 3, 2015 by Jcm
0 votes

a+b / a-b = 1/5
a+b+a-b / a+b-a+b = 1+5 / 1-5
a/b = - 3/2

a^2 / b^2 = 9/4
a^2 - b^2 / a^2 + b^2 = 9-4 / 9+4 = 5/13

answer Sep 4, 2015 by Avantika Agrawal



Similar Puzzles
0 votes

If
1^2 + 2^2 + 3^2 + ................. 100^2 = A &
1^3 + 2^3 + 3^3 + .................. 100^3 = B
Then
1^2*2 + 2^2*3 + 3^2*4 + 4^2*5 ........ 99^2*100 + 100^2*101=??

0 votes

If
P=Sin A.Sin B,
Q= Sin C.Cos A,
R = Sin A.Cos B and
S=Cos A.Cos C
then
5(P^2+Q^2+R^2+S^2) = ??

...