// Java Program to show segment tree operations like construction,
// query and update
class SegmentTree
{
int st[]; // The array that stores segment tree nodes
/* Constructor to construct segment tree from given array. This
constructor allocates memory for segment tree and calls
constructSTUtil() to fill the allocated memory */
SegmentTree(int arr[], int n)
{
// Allocate memory for segment tree
//Height of segment tree
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
//Maximum size of segment tree
int max_size = 2 * (int) Math.pow(2, x) - 1;
st = new int[max_size]; // Memory allocation
constructSTUtil(arr, 0, n - 1, 0);
}
// A utility function to get the middle index from corner indexes.
int getMid(int s, int e) {
return s + (e - s) / 2;
}
/* A recursive function to get the sum of values in given range
of the array. The following are parameters for this function.
st --> Pointer to segment tree
si --> Index of current node in the segment tree. Initially
0 is passed as root is always at index 0
ss & se --> Starting and ending indexes of the segment represented
by current node, i.e., st[si]
qs & qe --> Starting and ending indexes of query range */
int getSumUtil(int ss, int se, int qs, int qe, int si)
{
// If segment of this node is a part of given range, then return
// the sum of the segment
if (qs <= ss && qe >= se)
return st[si];
// If segment of this node is outside the given range
if (se < qs || ss > qe)
return 0;
// If a part of this segment overlaps with the given range
int mid = getMid(ss, se);
return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}
/* A recursive function to update the nodes which have the given
index in their range. The following are parameters
st, si, ss and se are same as getSumUtil()
i --> index of the element to be updated. This index is in
input array.
diff --> Value to be added to all nodes which have i in range */
void updateValueUtil(int ss, int se, int i, int diff, int si)
{
// Base Case: If the input index lies outside the range of
// this segment
if (i < ss || i > se)
return;
// If the input index is in range of this node, then update the
// value of the node and its children
st[si] = st[si] + diff;
if (se != ss) {
int mid = getMid(ss, se);
updateValueUtil(ss, mid, i, diff, 2 * si + 1);
updateValueUtil(mid + 1, se, i, diff, 2 * si + 2);
}
}
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
void updateValue(int arr[], int n, int i, int new_val)
{
// Check for erroneous input index
if (i < 0 || i > n - 1) {
System.out.println("Invalid Input");
return;
}
// Get the difference between new value and old value
int diff = new_val - arr[i];
// Update the value in array
arr[i] = new_val;
// Update the values of nodes in segment tree
updateValueUtil(0, n - 1, i, diff, 0);
}
// Return sum of elements in range from index qs (quey start) to
// qe (query end). It mainly uses getSumUtil()
int getSum(int n, int qs, int qe)
{
// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
System.out.println("Invalid Input");
return -1;
}
return getSumUtil(0, n - 1, qs, qe, 0);
}
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
int constructSTUtil(int arr[], int ss, int se, int si)
{
// If there is one element in array, store it in current node of
// segment tree and return
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
// If there are more than one elements, then recur for left and
// right subtrees and store the sum of values in this node
int mid = getMid(ss, se);
st[si] = constructSTUtil(arr, ss, mid, si * 2 + 1) +
constructSTUtil(arr, mid + 1, se, si * 2 + 2);
return st[si];
}
// Driver program to test above functions
public static void main(String args[])
{
int arr[] = {1, 3, 5, 7, 9, 11};
int n = arr.length;
SegmentTree tree = new SegmentTree(arr, n);
// Build segment tree from given array
// Print sum of values in array from index 1 to 3
System.out.println("Sum of values in given range = " +
tree.getSum(n, 1, 3));
// Update: set arr[1] = 10 and update corresponding segment
// tree nodes
tree.updateValue(arr, n, 1, 10);
// Find sum after the value is updated
System.out.println("Updated sum of values in given range = " +
tree.getSum(n, 1, 3));
}
}