top button
Flag Notify
    Connect to us
      Site Registration

Site Registration

What would be the value of Sin(50 + A) - Cos(40 - A)

+1 vote
1,206 views

What would be the value of Sin(50 + A) - Cos(40 - A), share your working also?

posted Mar 3, 2016 by anonymous

Share this puzzle
Facebook Share Button Twitter Share Button LinkedIn Share Button

3 Answers

+1 vote

sin(A+B)=sinA cosB+cosAsinB
cos(A-B)=cos AcosB+ sinA sinB
so the right answer is= 0

answer Mar 3, 2016 by Gunjan Saraswat
+1 vote

cos x=sin (90-x)
therefore cos(40-A)=sin(90-(40-A))=sin(50+A) substitute in the original equation
sin (50+A)-sin(50+A)=0

answer Feb 11, 2017 by Kewal Panesar
0 votes

Sin (50 + A) = sin50 cosA + cos50 Sin A
Cos (40 - A) = cos40 CosA + sin 40 Sin A

so
Sin (50+A) - Cos (40 - A) = Cos A ( Sin 50-Cos40) + SinA(Cos 50 - Sin40)

Sin50 = cos (90-50) = cos 40 and similarly
Cos50 = sin 40
or
Sin50 - Cos40 = 0
Cos50 - Sin40 = 0

So Answer is ZERO

answer Mar 3, 2016 by Salil Agrawal



Similar Puzzles
0 votes

What is the range of the values of k such that
k Cos A - 3 Sin A = k + 1

has a real solution?

+1 vote

If
Sin A + Cos A = sqrt(2) Sin (90 - A)
then
Cot A = ??

0 votes

If
P=Sin A.Sin B,
Q= Sin C.Cos A,
R = Sin A.Cos B and
S=Cos A.Cos C
then
5(P^2+Q^2+R^2+S^2) = ??

...