Sin A=Cos A implies A=45 degress Cos 2A= Cos 2(45)=Cos 90=0
Ans : 0
Use the the formula. cos (A+B) = cos A cos B - Sin A Sin B
So in our case : cos 2A = Cos (A + A) = cos A cos A - sin A sin A since: cos A = sin A so = cos^2 A - cos^2 A = 0
Sin A = Cos A
Divide by Cos A gives us Tan A = 1 i.e. A is 45
so Cos 2A is Cos 90 which is zero
So in our case : cos 2A = Cos (A + A) *Sin A = CosA ** implies A=45 degress Cos 2A= Cos 2(45)=Cos 90=0 so the right answer is zero(0)
If Sin A + Cos A = sqrt(2) Sin (90 - A) then Cot A = ??
If P=Sin A.Sin B, Q= Sin C.Cos A, R = Sin A.Cos B and S=Cos A.Cos C then 5(P^2+Q^2+R^2+S^2) = ??
What is the range of the values of k such that k Cos A - 3 Sin A = k + 1
has a real solution?
What would be the value of Sin(50 + A) - Cos(40 - A), share your working also?